City of Belvidere

South Side Stormwater Study

Prepared by:

www.baxterwoodman.com

March 15, 2018

City of Belvidere South Side Stormwater Study TABLE OF CONTENTS

Section 1.		POSE OF STUDY	Page No.
2.	BACK	GROUND	
3.	2.1 EXIST	Watershed and Study Area	7
4.	3.1 3.2 3.3 ANAL	Existing Drainage SystemSystem DeficienciesTheoretical Detention Analysis	10
	4.1	Approach and Data Collection4.1.1 Data Collection and Review4.1.2 Public Meeting	14
	4.2	Model Development	15 15 17 19 19
5.	ALTE	RNATIVES	17
	5.1 5.2 5.3 5.4 5.5	Optimizer Software	21 21 22 22
6.		EPTUAL IMPROVEMENT PLAN	
	6.1 6.2	100-Year Level of Service Improvement	27 27 27 27 29
	0.5	July Consuctations	34

LIST OF TABLES

<u>Table</u> <u>Page No.</u>

1	Detention Volume Required to Meet Current City Requirements		
2	Existing Conditions Flood Depths at Flooding Problem Areas20		
3	Proposed Conditions Flood Depths at Flooding Problem Areas25		
4	Overview of Engineer's Estimate of Probable Cost26		
	LIST OF FIGURES		
<u>Figure</u>	Page No.		
1	Study Area Map7		
2	Problem Area Locations11		
3	Stop Sign at the NE Corner of 8th & Fremont		
4	East Ave15		
5	Backyard at Warren Ave15		
6	Drainage Basin Map17		
7	XPSWMM Model Schematic18		

100-Year Level of Service Plan......26

Page 3

TABLE OF CONTENTS

8

9

10 11 TABLE OF CONTENTS Page 4

LIST OF APPENDICES

<u>Appendix</u>

Appendix A Historical Photos and Documentation

Appendix B Rainfall Data

Appendix C Modeling Input and Site Analysis

Appendix D As-Builts and Plans

Appendix E Cost Estimates

Appendix F Conceptual Improvement Plan Exhibits

TABLE OF CONTENTS Page 5

LIST OF ABBREVIATIONS

B&W - Baxter & Woodman, Inc.
CES - Civil Engineering Services, Inc.

City - City of Belvidere
CN - curve number

FEMA Federal Emergency Management Agency

ft feet

GIS Geographic Information System

in inches

NLCD - National Land Cover Database
SCS - Soil Conservation Service
Tc - time of concentration

USGS - United States Geological Survey

LIST OF DEFINITIONS

Curve Number (CN)

An empirical parameter used to estimate runoff from a rainfall event, for each subbasin.

Design Storm

Rainfall amount and distribution in space and time, used to determine a design flood or design peak discharge.

Flood Insurance Study (FIS)

A compilation and presentation of flood risk data for specific watercourses, lakes, and coastal flood hazard areas within a community.

Overland Flow Path

An above-ground component of a drainage system that caters for overland flows that occur when underground drainage pipes reach their capacity and cannot cope with more run-off from heavy rainfall.

Stormwater Conveyance

Stormwater features designed for the movement of stormwater through the drainage system, such as pipes, inlets, manholes, ditches, depressions, swales, streams, etc.

Time of Concentration (Tc)

The time required for runoff to travel from the hydraulically most distant point in the watershed to the outlet.

1. PURPOSE OF STUDY Page 6

1. PURPOSE OF STUDY

The City of Belvidere has experienced frequent, long-term flooding and stormwater drainage issues in several locations on the south side of the Kishwaukee River. The City retained Baxter & Woodman, Inc. to study the existing stormwater infrastructure within the south side of the City and develop a conceptual plan for system improvements. The primary goals for the study include:

- Analysis of the conveyance and storage capacity of the existing drainage system;
- Evaluation of the nature and extent of flooding throughout the south side, focused on known problem areas; and
- Development of a conceptual improvement plan that will reduce the impact of flooding on residents, and increase the operational capacity of south side stormwater infrastructure.

This report summarizes the input B&W received from local residents impacted by south side flooding, the data and tools used to analyze the existing drainage system, proposed stormwater conveyance and storage improvement alternatives, planning level costs, and a conceptual improvement plan with recommended implementation phasing.

2. BACKGROUND Page 7

2. BACKGROUND

2.1 Watershed and Study Area

The City of Belvidere is located in Boone County, Illinois and covers a total area of just over 12 square miles. Its current population is over 25,000 residents. The Kishwaukee River generally flows west through the City, dividing the north and south sides. The south side study area is loosely bounded by the Kishwaukee River to the north, US-20 to the south, Appleton Road to the east, and Belvidere Road to the west.

Figure 1: Study Area Map. Map shows the major storm basins in green and the existing storm sewer system in orange.

The total south side watershed area is approximately 1,300 acres, consisting of nine (9) of the City's separate drainage basins. These basins are designated as Basins A, A-1, B, C, D, D-1, E, F, and F-1. Land use is mostly residential with pockets of commercial and institutional development. The area includes four schools: Belvidere High School and Middle School, Washington Elementary, and

2. BACKGROUND Page 8

Immanuel Lutheran School. A downtown commercial area is located along State Street. The south side of the City was mostly developed before modern stormwater regulations were in effect. Topography is hilly and rolling, creating areas where large amounts of stormwater flow overland through streets and properties. The rolling topography also includes large depressional areas where ponding can reach several feet deep before surface flow can continue downstream.

3. EXISTING CONDITIONS

3.1 Existing Drainage System

The existing stormwater drainage system consists mostly of closed conduits, with curb and gutter road drainage to storm inlets. While a large portion of the storm sewer system is contained within roadway right of way, several runs of mainline storm sewer are located within side and rear yard drainage easements. Some portions of the study area are drained by roadside ditches and culverts. Generally, the drainage system conveys stormwater northwest to storm sewer outfalls located along the south bank of the Kishwaukee River.

Basin A is a large basin at the southern end of the study area. The storm infrastructure flows mostly west and has two outlets. At the outlet of the basin, flow is divided into Basin A-1 to the west and basin F to the north. The majority of the flow continues west to Basin A-1. Near the western limits of the basin, the storm sewer system outlets to a drainage ditch through three (3) 57-inch by 38-inch elliptical corrugated metal pipes northwest of the intersection at West 6th Street and 13th Avenue. This ditch flows north and then northwest to the Kishwaukee River, and receives discharge from 27-inch and 15-inch storm sewer outfalls flowing west from Aspen Court and West 5th Street, respectively.

The storm sewer that connects basin A to basin F acts as an overflow relief sewer to the trunk line. Basin F has four outfall locations to the Kishwaukee River, one (1) large 72-inch pipe that drains the majority of the basin, and three small outfalls that directly drain a small section of West Locust Avenue.

Basin B runs southwest through the middle of the study area and drains directly to the Kishwaukee River via a 91-inch by 58-inch elliptical storm pipe. The basin has many areas where the storm sewer trunk line does not follow the road, and instead cuts through yards and easements. These pipes provide a maintenance challenge for the City and have to be cleaned and repaired more often than pipes that are under the road or road right-of-way.

Basin C is a midsize basin, north of Basin B, that runs primarily northwest and outlets directly to the Kishwaukee River. It has three outfall pipes, a 24-inch, 30-inch, and 48-inch pipes, that outlet under the Main Street Bridge.

The last four basins, Basins D, D-1, E, and F-1 are smaller basins with smaller, shorter, more localized stormwater infrastructure. Basin F-1 is on the west side of the study area and drains via a 15-inch outfall to the same drainage ditch as Basin A-1. Basins D and E are small areas to the northeast side of the study area and directly drain to the Kishwaukee River. Basin D-1 drains to the drainage swale that runs along US-20 BUS Route on the east side of the study area.

There are a few small existing stormwater detention basins, specifically in Basins A, B, and D. All of the stormwater basins ultimately drain to the Kishwaukee River. The largest of these detention

3. EXISTING CONDITIONS Page 10

basins is located in Basin A at Belvidere High School at the northwest corner of Route 20 and East Avenue.

3.2 System Deficiencies

Flooding problems within the study area generally fall into the following categories:

- Overland flow through yards and roadways resulting from surcharged storm sewer;
- Ponding due to insufficient overland conveyance routes; and
- Overbank flooding from the Kishwaukee River.

Because most of the south side was developed before implementation of current stormwater regulations, the existing system lacks adequate storage and conveyance capacity to effectively detain or convey runoff from large storm events. The undersized system surcharges and causes problematic flow of stormwater through yards, roadways, and other properties. These flows often reach low-lying areas that lack a suitable overland flow route, typically intersections or roadway sags. Runoff to these areas collects and ponds during large rain events until the storm sewer system can drain down floodwaters.

Several specific problem areas were identified by City staff and local residents. These areas are described in detail in the following section. In some locations, flooding occurs frequently and has been reported multiple times over the course of a year.

Figure 2: Problem Area Locations. Known problem areas are outlined in red.

East Avenue

East Avenue runs north/south through Basins A and B of the City between Route 20 to the south and Logan Avenue to the north. The road profile undulates, creating low spots that pond with water during large storm events. Specific problem areas include the intersections of East Avenue with Bellwood Drive and East 4th Street.

Currently, at the intersection of East Avenue and Route 20, water from the highway runs down the roadside ditch, overwhelms the channel, and overtops East Avenue at Bellwood Drive during large storm events. A berm separates the roadside ditch from a stormwater detention area owned by Belvidere High School.

Bellwood Drive

Bellwood Drive is a short stretch of road that intersects with East Avenue to the east, and turns into Cedardale Drive to the west. It is mostly residential with two church properties on the south side of the street. A sag in the Bellwood Drive roadway collects water during large storms, and significant ponding can occur below the overland flow outlet.

Fremont Street and Elmwood Drive

The south end of Fremont Street is a low-lying area that collects water during large storm events. Currently, there is no storm sewer under Fremont Street between Elmwood Drive and E 8th Street. Instead, the existing 36" trunk line storm sewer from Elmwood Drive cuts across backyards and continues to South Main Street. This storm sewer location is difficult to access and presents maintenance difficulties for the City. The existing storm sewer is undersized for the area draining to it and becomes surcharged during large storm events.

East 4th Street, from East Avenue to Fremont Street

This entire trunk line segment of storm sewer is located in a low-lying area in Basin B that holds water during large rain events. The storm drain is routed through side-yards and easements, making maintenance difficult and likely causing accelerated deterioration of stormwater infrastructure. When the storm drain is surcharged, the water flows rapidly through yards and driveways, flooding houses and garages in the area. These problems are caused by inadequate storm drain capacity, aging infrastructure, and a lack of a defined overland flow route.

West 7th Street and 7th Avenue

This intersection used to have an open channel stormwater outlet that was converted to storm sewer in the 1980s when the area to the west of the intersection developed. The open channel was replaced by two (2) 38-inch x 60-inch elliptical storm pipes. The area lacks stormwater storage and the storm drain is undersized for the amount of flow that moves through the area. The intersection is a low-lying area that lacks an adequate overland flow route and floods during large storm events.

Birch Avenue and West 10th Street

This is a depressional intersection in Basin A where water ponds during large storm events. The storm drain is undersized for the area draining to it and the intersection lacks a suitable overland flow route. The storm sewer surcharges during large storm events, and residents have witnessed stormwater flowing out of inlet structures. Ponding depths can make navigating the road difficult.

3.3 Theoretical Detention Analysis

Development within City of Belvidere has altered hydrologic conditions of the area, adding a significant amount of impervious area and increasing stormwater runoff. Most of the City's south

Page 12

3. EXISTING CONDITIONS Page 13

side was developed before implementation of current stormwater regulations. As a result, these areas pass stormwater runoff to downstream areas without detaining it to control peak discharge rates. In many instances, the downstream drainage system does not have enough capacity to convey these flows without flooding roads, homes, and other properties during large storm events.

In order to understand the deficiencies of the existing drainage system, B&W evaluated the detention volumes that would have been required in the south side if it had been developed to meet current stormwater ordinance requirements. The City follows Boone County's detention standards, which limit 100-year discharge rates from a developed site to the lower of 0.15 cfs per acre or the pre-development release rate in the absence of a watershed plan. The purpose of this requirement is to prevent increases in downstream flow rates and enlargement of floodplain as the watershed area develops.

B&W created an XPSWMM model of the City's nine (9) south side drainage basins. In this model, runoff from each basin was routed through a storage node to compute the required detention volume for each basin. Orifice restrictors were included to control outflow from each storage node, and each restrictor was sized to meet the required release rate. Model results indicate that a total of approximately 359 acre-feet of stormwater detention volume would be needed in the south side to meet current ordinance requirements. Results of the analysis are summarized in Table 1 below.

TABLE 1

Detention Volume Required to Meet Current City Requirements

Drainage Basin	Area (ac)	Allowable Release Rate (cfs)	Required Detention Vol. (ac-ft)
A	382.47	57.4	105.1
A-1	82.04	12.3	24.6
В	360.98	54.1	99.1
C	143.34	21.5	41.5
D	78.49	11.8	22.0
D-1	80.88	12.1	22.7
E	30.96	4.6	9.3
F	113.09	17.0	26.8
F-1	26.87	4.0	7.8
Total	1,299.12	194.9	358.8

4. ANALYSIS APPROACH

4.1 Approach and Data Collection

B&W developed an existing conditions hydrologic and hydraulic model covering all nine (9) of the City's south side drainage basins for the purpose of evaluating existing and proposed conditions. While several stormwater drainage studies have previously been completed in different areas of the south side, this study was a more comprehensive analysis. Information from previous reports was utilized for this study.

4.1.1 Data Collection and Review

B&W collected data from the City, and a variety of other state and local sources. This data included:

- GIS Mapping Data
- 2-foot topographic contours (Boone County)
- Previous stormwater reports and modeling
- Historical record drawings
- FEMA Flood Insurance Study (FIS)
- FEMA Flood Insurance Rate Map (FIRM)
- Photos and personal accounts of flooding

Additionally, B&W performed field reconnaissance and collected site-specific survey data in selected locations. Survey included invert and rim elevations of the storm sewer system, ground surface elevations, low opening elevations of residences, and other pertinent information.

This data was used to assess the area and construct a detailed hydrologic and hydraulic model of the south side.

4.1.2 Public Meeting

A public meeting was held on October 9th, 2017 to gather resident information about flooding in the study area.

Figure 3: Stop sign is at the northeast corner of 8th St and Fremont, July 2016.

Attendees provided photographs, videos, map drawings, and other documentation of drainage issues they have experienced or have knowledge of. They also provided dates and frequency of flooding events, as well as magnitude information. Most of the drainage issues described coincided with known large rainfall events over the past two decades.

Figure 4: Back vard at Warren Ave., July 2016.

4.2 **Model Development**

XP Solutions' XPSWMM modeling software was used to analyze the study area. XPSWMM is a fully dynamic hydraulic and hydrologic modeling software that allows for a robust analysis of stormwater flow for complex engineered and natural systems. XPSWMM evaluates the interaction of all parts of the drainage system, including pipes, channels, street flow, and stormwater storage. XPSWMM is capable of running multiple storm duration and event scenarios.

4.2.1 **Hydrologic Analysis**

XPSWMM was used to model the watershed and rainfall attributes of the south side of the City. Watershed subbasins were delineated based on review of the County's 2-foot contour data and aerial photography. The study area is divided into the City's nine (9) south side drainage basins. This study slightly amended the basin boundaries from previous studies to better correlate with

available contour data. Additionally, B&W subdivided each of these drainage basins into smaller subbasin areas to evaluate stormwater flows to modeled components of the drainage system.

B&W utilized the SCS curve number method to determine runoff depths for each subbasin. Land use data was gathered from the USGS National Land Cover Database (NLCD), 2011 edition. Soils data was collected from the NRCS Soil Survey. This information was used to compute a Curve Number (CN), an empirical parameter used to estimate runoff from a rainfall event, for each subbasin. Time of Concentration (Tc) is the time required for runoff to travel from the hydraulically most distant point in the watershed to the outlet. B&W calculated Times of Concentration for each subbasin utilizing the County's 2-foot contour data and aerial photography.

A catchment map showing subbasin delineation is included below. The subbasins that are not included in the model are:

- Areas that do not contain storm sewer pipes 24 inches in diameter or larger and do not discharge to downstream pipes that are 24 inches or more in diameter; or
- Drain directly to the river by overland flow routes.

Figure 6: Drainage Basin Map

4.2.2 Hydraulic Analysis

The XPSWMM model includes all pipes on the south side that are 24 inches in diameter or larger, with specific problem areas modeled in finer (smaller diameter) detail. Pipe size information was derived from City GIS storm sewer data and B&W's site-specific survey. Rim elevations were taken from spot survey data of the area, past hydraulic models, or interpolated from the County's 2-foot contour data, in that order. Invert elevations were assigned based on survey data, model input from previous studies, or interpolation between points of known elevation if data was not available. Pipe slopes generally range between 0.3% to 2%.

Overland flow paths were added to the model along roads and through properties that are either known to be overland flow routes or were determined to be possible overland flow routes based on review of the 2-foot contour data for the area. Road cross sections were input as 20 feet wide and

include a curb and road crest. Cross sections representing flow through yards and natural areas were input as a trapezoidal channel, with a 20-foot wide bottom and 1:1 side slope. All overland flow routes were assumed to be 3 feet deep to convey the majority of floodwaters, even in large storm events. Existing stormwater detention basin volumes were computed based on the 2-foot contours for the area.

Tailwater elevations were added at pipe outlets that discharge into the Kishwaukee River. Tailwater elevations were derived from the Flood Insurance Study (FIS) 10-year flood profile.

Figure 7 shows the XPSWMM model schematic. Orange links represent storm sewers or a combination of both storm sewer and overland flow. Green links represent overland flow paths.

Figure 7: XPSWMM Model Schematic

4.2.3 Model Calibration

The model was calibrated to show flooding in all known problem areas. The existing conditions model results were examined to verify that reported flood depths correlated to flooding observed during the July 2017 rainfall event. The July 2017 storm event was chosen for calibration because it was the storm that had the most available historical data. Rainfall data was taken from a rain gage at the City's wastewater treatment plant. The July 2017 event produced at total of 5.7 inches of rain in four days, which equates to approximately a 10-year storm event.

The model's reported flood depths were calibrated to match observed flooding depths using pictures and testimonials from residents and City staff about known problem areas. Model calibration for urban storm drain systems is difficult because there are rarely any measured data on flood heights, and the calibration must depend on remembered accounts. There is rarely any data from flow meters or stage recorders. This is why resident feedback and historical pictures that include high water marks are especially valuable.

4.2.4 Critical Duration Analysis

B&W performed critical duration analysis of the south side drainage system to determine the storm duration that induces the most severe flooding conditions. A critical duration design storm is the storm duration that produced the highest runoff flows or flood stages for the range of storm durations evaluated. Generally, neighborhood stormwater conveyance systems have critical durations up to a couple of hours. However, for systems with large tributary drainage areas or significant storage, the critical duration can be much longer. For the south side of Belvidere, critical durations are expected to be relatively short, because of the lack of stormwater storage infrastructure.

B&W performed a critical duration analysis of the south side drainage system for both the 10- and 100-year storm events. Rainfall data was derived from the northwest sectional rainfall depths published in the Illinois State Water Survey's *Bulletin 70*, along with appropriate Huff distributions. For this study, the 30-min, 1-hr, 2-hr, 3-hr, 6-hr, 12-hr, 18-hr, and 24-hr storms were analyzed to determine the duration that caused the most severe flooding conditions. The critical analysis for the study area was found to generally alternate between the 1-hr and 2-hr storm, depending on the specific area in the model.

4.2.5 Existing Conditions XPSWMM Results

The model was evaluated using 2-, 5-, 10-, and 100-year storm events to determine the existing capacity of the system. Overall, the system showed a maximum of a 2-year storm event capacity, meaning that the 2-year rainfall can be contained in the storm drain system. The 5-, 10-, and 100-year design storms all showed instances of overland flooding and surcharging of the storm sewer system. Existing conditions flood depths reported by the XPSWMM model are presented in Table 2. This table includes results for the six (6) known flooding problem areas described in Section 3.1. Results show that flooding depths at these locations range from 1.9 feet to 4.5 feet in the 100-year, critical duration storm event.

TABLE 2

<u>Existing Conditions Flood Depths at Flooding Problem Areas</u>

	Flood Depth (ft)			
Location	2-Year	5-Year	10-Year	100-Year
East Ave.	0	1.7	2.5	3.7
Bellwood Dr.	2.6	2.9	3.0	4.0
Fremont St Elmwood Dr.	1.2	1.5	1.6	1.9
East 4th St.	0	0	1.0	3.1
West 7th St 7th Ave.	0.9	2.0	2.7	4.5
Birch Ave West 10th St.	0	0.6	1.4	2.4

5. <u>ALTERNATIVES ANALYSIS</u>

B&W developed and analyzed several alternatives for improving stormwater drainage system performance. These alternatives included storm sewer system improvements, new storage basins, upsizing existing detention basins, and improving overland flow routes. Alternatives were evaluated both individually and in combination at each problem area.

5.1 Optimizer Software

Optimatics' Optimization software was used to enhance and support engineering input and design decisions for alternatives development. Its "Optimizer" software is a cloud-based optimizations software that is used with the hydraulics and hydrology model to determine the most effective way to improve a system. Optimizer was programmed to evaluate all conveyance, storage, and surface drainage options by weighing each option against performance and cost. Optimizer's analyzed each option within constraints that were input to account for site limitations such as available pipe cover, maximum pipe depth due to outfall conditions, and available footprints for storage facilities. The software analyzed hundreds of planning options, and displayed the options that give the best results while minimizing capital and operating costs.

5.2 Current Plans

The City has already started addressing flooding concerns in the south side prior to this study, and conceptual plans were available for some of these projects. One objective of this study was to confirm that the existing designs would benefit the system overall, and recommend modifications to the designs if needed.

5.2.1 Bellwood Ponds

The Bellwood Ponds are two (2) proposed stormwater storage ponds to be located on church properties on the south side of Bellwood Avenue. The ponds would utilize available open space to detain water that flows from the highway to Bellwood Avenue. Plans developed by Civil Engineering Services, Inc. (CES) were used to determine the storage volumes in the model for this analysis.

The model analysis showed that these two ponds would help alleviate flooding on Bellwood Drive. If combined with the proposed High School Pond Improvements (Section 4.2.2), flooding depths on Bellwood would decrease from 36 inches to 11 inches for the 10-year storm. For the 100-year storm, flooding would decrease from 48 inches to 32 inches. At the south end of Fremont Street, located immediately downstream, flooding depths would decrease from 58 inches to 20 inches for the 10-year storm. For the 100-year storm, flooding depths would decrease from 78 inches to 46 inches. Since the storage location is upstream in the watershed, most of the benefits are localized in the upper reaches of the watershed.

5.2.2 Redesign of the High School Detention Pond

Belvidere High School has an existing stormwater detention pond on the northeast corner of East Avenue and Route 20. The pond currently has a berm between the Route 20 roadside drainage ditch and the detention pond, preventing stormwater from the roadway drainage system from the ditch from entering the pond. The City has obtained permission from IDOT to remove the berm and allow water from the ditch to enter the detention pond. Modeling shows that the pond is currently oversized and does not fill up during the 100-year storm. The pond could manage additional detention without adverse effects.

5.3 Conveyance Options

Modeling of the system shows that there are many conveyance choke points in the drainage system that do not provide sufficient conveyance capacity. Modeling shows that flooding at the identified problem area locations are typically caused by a lack of conveyance capacity in the storm sewer system coupled with inadequate overland flow routes. During large storm events, the system becomes surcharged and cannot accept more runoff. In certain areas, the pipes become pressurized and water is pushed out of the system through inlet structures.

A conveyance solution would include upsizing pipes to eliminate choke points in the system and allow for enough capacity to move water through the storm sewer system without backups. Generally, design conventions call for conveyance systems to provide 10-year capacity. Modeling results show that the City's current system generally operates at a 2-year conveyance level. Conveyance improvements were added where the existing storm drain system does not provide 10-year capacity and the model showed more than 6 inches of flooding. There are also areas where the storm sewer size was increased upstream of an area to provide attenuation or downstream to eliminate choke points in the system.

Currently, pipes running through yards and easements are a maintenance concern for the City. This analysis removed and reconfigured those areas if it was determined that an increase in pipe capacity was needed. If a storm sewer was determined to need upsizing and the pipe is not currently within a roadway right of way, the original pipe was abandoned and an upsized sewer was re-routed along a road.

Increasing conveyance by upsizing storm sewer pipes is effective but can be costly. Increases in conveyance can also increase outfall flowrates, which can be detrimental to the environment and may cause or exacerbate flooding problems downstream. Because of the cost and potential downstream impacts, it is best practice to combine conveyance improvements with stormwater storage solutions and improved overland flow routes to best manage stormwater.

5.4 Storage Options

The south side was largely developed before stormwater detention was required and, in its developed state, does not have much open space to add storage without the acquisition of properties. The City is already planning two stormwater storage improvements, discussed in Section 4.2 above, but additional storage was evaluated.

Open space areas within the south side were considered the preferred locations for stormwater storages. Three existing open spaces were analyzed to determine if they were viable options for stormwater storage. Washington Elementary has a large open area to the south of the school that could be utilized for stormwater storage. Additionally, an open plot of land is located at the north end of 8th Avenue that is currently open space. A third open area is situated at the west limits of the study area, along Appleton Road, and is currently being used as farmland.

Of these three options, Washington Elementary was found to be the best viable open space to put stormwater storage. By connecting a new pond at this location to the trunk line drain that runs along 7th Avenue, water can be diverted to the pond and stored, taking pressure off of the drainage system and preventing overflows.

The open plots at 8th Avenue and Appleton Road were not good candidates because they are located too far downstream of the problem area locations and do not remediate flooding without the addition of large conveyance improvements. The site could be used for storage to mitigate increased flow to the Kishwaukee River, if that becomes a requirement for future permitting.

Because of the lack of open space available for stormwater storage, property acquisitions would be necessary for all additional storage locations. Using the Optimizer tool, six (6) possible locations were analyzed, and a total of four (4) additional storage areas were chosen. These locations would require property acquisition by the City. Storage ponds were sized for the 100-year design storm to prevent flooding depths of six (6) inches or greater in conjunction with conveyance improvements. The ponds are proposed in low areas, close to or within problem area locations, to provide the most flood relief and minimize the need for conveyance improvements and pipe upsizing. Additionally, many of these properties are known to experience repeat flood damage.

5.5 Additional Analysis

B&W evaluated overland conveyance options in many areas to determine the most cost effective alternatives for flood relief. Surface drainage improvements are designed to provide a positive drainage path away from the problem areas and reduce the potential for ponding in those locations. One area that would benefit from an overland drainage route is at Birch Avenue and 8th Street. The intersection currently lacks a suitable overland flow route, and the storm sewer system does not have enough capacity for large storm events. Of the options evaluated to address flooding at this location, the most cost effective improvement would be to acquire property between W 10th Street

and W 9th Street and excavate a swale that allows water to flow by gravity out of the depressional area.

Stormwater pumping options were also evaluated, specifically for the stormwater storage pond at Belvidere High School. Construction of a lift station was considered to pump water from downstream locations at the intersection of Whitney Boulevard and West 8th Avenue up to the Route 20 roadside ditch so it can flow by gravity to the pond and be stored. Under this alternative, additional stormwater storage would be added on the school property. This option was not chosen because initial evaluation indicated it would be more costly to construct than the other storage options considered. Additionally, it would require maintenance and operation cost in perpetuity.

6. CONCEPTUAL IMPROVEMENT PLAN

6.1 100-Year Level of Service Improvement

The conceptual improvement plan is designed to provide flood protection during the 100-year, critical duration storm event. Design criteria stipulated that no more than six (6) inches of flooding was acceptable. Generally, six (6) inches of flooding is assumed to be confined to the road and does not overtop the curb. The plan provides a 100-year level of service, with less than six (6) inches of flooding for the 100-year storm, and the elimination of stormwater ponding in the 10-year storm.

The plan includes a combination of increased storm sewer system conveyance, stormwater storage, and improved overland flow routes. The plan is limited to Basins A, A-1, B, and F, which contain the identified flooding problem areas.

Modeled proposed conditions flood depths are presented in Table 3. This table includes results for the six (6) known flooding problem areas described in Section 3.1. Results show that flooding is limited to depths of less than or equal to 0.5 feet for all storm events evaluated, and that the storm sewer system has capacity to convey storms up to the 10-year critical duration event. Due to the storage added to the drainage system, the critical duration changed from the existing conditions analysis in some locations.

TABLE 3

Proposed Conditions Flood Depths at Flooding Problem Areas

	Flood Depth (ft)			
Location	2-Year	5-Year	10-Year	100-Year
East Ave.	0	0	0	0
Bellwood Dr.	0	0	0	0.5
Fremont St Elmwood Dr.	0	0	0	0
East 4th St.	0	0	0	0
West 7th St 7th Ave.	0	0	0	0
Birch Ave West 10th St.	0	0	0	0

Figure 8: 100-Year Level of Service Plan

TABLE 4 shows the engineer's estimate of cost for each phase. A full breakdown of cost estimates is included in Appendix E.

TABLE 4

Overview of Engineer's Estimate of Probable Cost

Overview of Engineer's Estimate of Cost			
Phase 1	\$370,000		
Phase 2	\$1,810,000		
Phase 3	\$11,490,000		
Phase 4	\$19,180,000		
Phase 5	\$9,400,000		
Total Project Cost	\$42,160,000		

6.2 Phasing Plan

The conceptual plan is divided into five implementation phases, with Phases 1 and 2 already undergoing planning by the City. Phases 3, 4, and 5 consist of a series of improvements based on the analysis presented in this report. The phases are divided by problem area location and basin, with downstream projects being slated first, so as not to accrue negative downstream effects. Within each phase, projects are prioritized, starting with the most needed first, and listed in recommended order.

6.2.1 Phase 1

Phase 1 consists of the construction of the Bellwood Ponds on two church properties south of Bellwood Drive. These ponds were analyzed as part of the system and are discussed in more detail in Section 4.2.1 of this report.

6.2.2 Phase 2

Phase 2 includes the redesign of the Belvidere High School Detention Pond. The expansion and reconfiguration of the pond and highway ditch were modeled as part of this study, and determined to be a benefit to the system. Analysis is included in Section 4.2.2.

6.2.3 Phase 3

Phase 3 includes improvements in Basin F and at the downstream end of Basin A. Phase 3 addresses flooding for the problem areas grouped in the southwest side of the study area. Improvements include a new stormwater pond at Washington Elementary, conveyance improvements along W 7^{th} Street, 5^{th} Avenue, and Pearl Street, and an addition of a swale at Birch Avenue and W 10^{th} Street to provide a positive overland flow outlet.

Figure 9: Phase 3 Plan

The highest priority project in this area would be the addition of a detention pond at Washington Elementary that would provide 47.2 ac-ft of surface storage. The pond would be connected to the existing storm sewer system that runs along 7th Avenue. The pond would outlet to the downstream segment of the existing storm sewer on 7th Avenue. The space for this pond would have to be acquired from the school or an easement would need to be provided, and the associated costs are not included in the cost estimate.

The next project would be to add a new 60-inch storm sewer along 5th Avenue, from West 7th Street to Washington Elementary to divert water to the 47.2 acre-foot pond at the school. The diversion pipe would take pressure off of the existing system and redirect water to the new pond to be stored until the storm sewer system has capacity to drain the pond.

The third project would be upsizing the trunk line storm sewer along West 7th Avenue, replacing the existing storm sewer with a 72-inch diameter pipe from 5th Avenue to East 7th Street.

Additional proposed improvements for the area include an upsized 36-inch storm sewer along Pearl Street, from West 9th Street to West 7th Street, and an improved overland flow path at Birch Avenue and West 10th Street. The overland flow path would require two property acquisitions.

The engineer's estimate for this work is \$11,490,000. This total includes the cost of the two property acquisitions necessary for the overland flow path at Birch Avenue and West 10th Street, but does not include the cost for property acquisition at Washington Elementary.

6.2.4 Phase 4

Phase 4 includes all proposed improvements in Basin B. Improvements would start upstream on East 6th Street and continue throughout the system to West Locust Street. The plan includes conveyance improvements along East 6th Street, East Avenue, East 4th Street, East 3rd Street, Union Avenue, Maple Avenue, and West Pleasant Street, and two proposed stormwater detention ponds at East 4th Street and East Avenue and East 4th Street and Fremont Street.

Figure 10: Phase 4 Plan

The first project would be the installation of a relief drain along East Avenue and East 4th Street. The 42-inch relief storm sewer would add capacity to the system and provide relief where the existing flooding is the most extreme.

The next project would be immediately downstream of the new relief storm sewer, and would include upsizing the mainline storm sewer along East 4th Street and Whitney Boulevard to 54-inch and 60-inch diameter pipe.

Following the conveyance improvements, the City could install the proposed stormwater pond at East 4th Street and East Avenue. The proposed pond provides 17.8 acre-feet of storage and would likely require at least 17 property acquisitions to be constructed. The location of this storage is somewhat flexible and could be relocated or broken up into smaller ponds in the design stage, as long as enough storage volume was provided. This study includes abandoning (or removing, if necessary) the existing storm sewer that runs through the yards in that area.

The fourth project would be to install the second detention pond at East 4th Street and Fremont Street. The pond should provide 6.5 ac-ft of storage volume and would likely require at least 11 property acquisitions. Again, this pond could potentially be relocated or divided up, as long as enough storage is provided for the area.

Additional improvements include conveyance improvements on East 6th Street and East Avenue ranging from 36-inch to 60-inch diameter storm sewer. These improvements include a 42-inch relief storm sewer that runs along East 6th Street to East Avenue, connecting back up to the main trunk line sewer at East 5th Street. The relief sewer will add capacity in the area, without removing the storm sewer that currently runs through the side and back yards of the neighborhood to the east of East Avenue. A short run of 72-inch diameter pipe would be upsized along East 3rd Street, from Garfield Avenue to Pearl Street, to provide added capacity. The last two conveyance improvements are along Union Avenue and Maple Avenue. The existing storm sewer runs through the properties on either side of Union Avenue. The proposed plan calls for these pipes to be abandoned and the upsized pipes to be run north along Maple Avenue and Union Avenue, and meet along West Pleasant Street. The proposed pipe along Union Avenue is 84-inches and the proposed pipe along Maple Avenue is 36-inches. After they meet on West Pleasant Street, the proposed 84-inch pipe continues under the rail road tracks and joins up with the existing system.

The engineer's estimate for this work is \$19,180,000. This estimate includes the cost of the property acquisitions for the two stormwater storage areas.

6.2.5 Phase 5

The final phase includes upstream improvements to Basin A. Improvements include conveyance increases along Bellwood Drive, Cedardale Drive, Elmwood Drive, Fremont Street, East 8th Street, and a small section of East Avenue. The plan also includes two proposed stormwater detention ponds at Fremont Street and the intersection of East 8th Street and Whitney Boulevard.

Figure 11: Phase 5 Plan

The highest priority project in this phase is the conveyance improvements along Bellwood Drive, Cedardale Drive, Elmwood Drive, and the relief drain along Fremont Street. The conveyance upgrades include installing 36-inch pipe along Bellwood Drive and Cedardale Drive and 42-inch pipe along Elmwood Drive and Fremont Street.

The next project would be the installation of the stormwater pond along Fremont Street. The pond along Fremont Street would require four property acquisitions and should provide 9.8 ac-ft for stormwater storage. As part of pond installation, the section of existing 36-inch pipe that runs through the pond properties should be abandoned or removed.

Additional components of this plan include upsizing pipes along East Avenue and East 8th Street with pipes ranging from 30-inches to 48-inches in diameter. Currently there is an undersized pipe running along the backyards of the properties north of East 8th Street. We recommend that this pipe be abandoned and 48-inch pipe be installed under East 8th Street, for ease of maintenance. An additional stormwater storage pond will be needed at the end of this upsized line, at the intersection of East 8th Street and South Main Street. This pond will provide 12.1 acre-feet of stormwater storage and would likely require property acquisitions of 12 residential lots.

The engineer's estimate for this work is \$9,400,000. This estimate includes the cost of the property acquisitions for the two stormwater storage areas.

6.3 Study Considerations

B&W developed the plan improvements presented in this study based on conceptual modeling of the south side drainage area. The model includes a limited analysis of the existing storm sewer system that omits pipes under 24 inches in most cases, and does not include all inlets and laterals necessary for detailed study and design. The improvements included in this report are conceptual, and will require additional analysis and refinement prior to design. Changes to proposed storage configurations, storage locations, storm sewer, and overland flow routes may be necessary.

Proposed storage locations and configurations will require property acquisition. They are proposed in locations that are not currently owned by the City that may not be available or desirable. Relocation of these storage facilities may be required to make the project constructible, and further analysis may be needed to confirm flood reduction benefits.

Downstream impacts of increasing stormwater discharges to the Kishwaukee River have not been analyzed as part of this study. Downstream impacts and associated permitting requirements should be evaluated fully before advancing any recommended improvements to design engineering. Additional modeling may be needed to assess the effects of increased stormwater flows to the river.

APPENDIX A HISTORICAL PHOTOS AND DOCUMENTATION

900 block of East Avenue

Pictures June 28, 2017

The pictures are mild. The flooding is usually a lot worse.

Street has flooded in 900 block of East Avenue at least four times this spring. We deal with this every year.

Unable to get in and out of drive ways.

I do not have pictures of the flooding between drive ways.

This is mild. Water is usually higher. The water is coming from the East Avenue north and south. It looks like a river between our drive ways. That water is coming from Washington Street behind us. Back yards are flooded and water just sits and goes into our basements.

When the flooding occurs cars and trucks continue to drive in it making things worse.

Russ & Betty McAllister

815-218-9044

Flooding Meeting to Study Storm Water Monday 10-9-2017

At City Hall 4:00 P.M. to 6:00 P.M.

Your photos and videos of your flooding are needed, with dates. This will be used to link it up with weather data too make plans on dealing with the flooding in your area. If you cannot make the meeting your pictures can be given to the Public Works Department at a later date. This is one small step toward solving the flooding problem. It will engineers information on the problem and hopefully lead to a solution. The Council Meeting that will follow has flooding on the agenda.

Ward Five Aldermen

Mark Sanderson

Marsha Freeman

1-815-975-9290

1-815-914-5990

Ward One Alderman

Clayton Stevens

1-815-544-6163

in Fried in 1938 Barris K X

tain maiss is 1502 frammer

Fre word Abo Sign is NE corner of

933 East Ark July? East ho 1 474 St 2016

7/25/16 933

22" DeepJuly storm 20171507 S. Main St.

July 23, 2016

5:38 pm

913 Casswell St.

Driveway and front yard over 1 foot deep

June 28, 2017 11:19 pm

June 28, 2017 11:19 pm 913 Casswell St.

Driveway

July 23, 2016 5:37 pm 903 and 913 Casswell St.

Driveways

5:38 pm 903 Casswell St.

Driveway and front yard

June 28, 2017 10:25 pm 913 Casswell St.

Basement

June 28, 2017 11:18 pm 903 Casswell St. Driveway and Yard

June 28, 2017
11:18 pm
903 Casswell St.
Driveway and side yard

June 28, 2017

11:18 pm

407 E. 4th St.

Water coming from backyard into driveway

June 28, 2017

10:55 pm

Casswell St.

Taken from 913 Casswell front porch look to E. 4th St. and Casswell St. intersection.

June 28, 2017

10:40 pm

407 E. 4th St.

Back yard

June 28, 2017

10:49 pm

407 E. 4th St.

Front yard and street

July 23, 2016 935 East Ave.

July 23, 2016
Side yard of 928 Warren Ave. and 932 Warren Ave. at start of water flow

July 23, 2016

Back yard at 928 Warren Ave at the start of water flow. Water got as deep as the door and came in through bottom of back door.

July 23, 2016

Back yard at 928 Warren Ave. at the start of water flow

July 23, 2016

Warren Ave.

Address left to right

919 Warren, 915 Warren, 909 Warren, 903 Warren

Photo taken from 928 Warren Ave.

407 4th St.

June 2009

Water line in yard

Garage door in back yard

July 2016

STHALE MILY 2016

APPENDIX B RAINFALL DATA

Climatological Data for BELVIDERE, IL - July 2007

Date	Precipitation	Snowfall	Snow Depth
2007-07-01	0.00	0.0	0
2007-07-02	0.00	0.0	0
2007-07-03	0 00	0.0	0
2007-07-04	0.55	0.0	0
2007-07-05	0.00	0.0	0
2007-07-06	0 00	0.0	0
2007-07-07	0.00	0.0	0
2007-07-08	0.00	0.0	0
2007-07-09	0.00	0.0	0
2007-07-10	0.35	0.0	0
2007-07-11	0.10	0.0	0
2007-07-12	0.00	0.0	0
2007-07-13	0.00	0.0	0
2007-07-14	T	0.0	0
2007-07-15	0 00	0.0	0
2007-07-16	0.00	0.0	0
2007-07-17	0 03	0.0	0
2007-07-18	0.25	0.0	0
2007-07-19	0.30	0.0	0
2007-07-20	T	0.0	0
2007-07-21	0.00	00	0
2007-07-22	0.00	0.0	0
2007-07-23	0 00	0.0	0
2007-07-24	0.00	0.0	0
2007-07-25	0.00	0.0	0
2007-07-26	0.83	0.0	0
2007-07-27	0.05	0.0	.0
2007-07-28	0 00	0.0	0
2007-07-29	0.00	0.0	0
2007-07-30	0 00	0.0	0
2007-07-31	0 00	0.0	0
Sum	2 46	0.0	
Average	-		00
Normal	3.98	0.0	_

Observations for each day cover the 24 hours ending at the time given below (Local Standard Time).

Precipitation : 7am Snowfall : unknown Snow Depth : unknown

STATE ILLING.	TNOO	27.46	RIVER JANAMIC OF	1			NATIONAL WEATHER SERVICE
TIME (local) OF OBSERVATION RIVER	Z) WEIL	PRECIPITATION	STANDARD TIME IN USE		RECORD OF RIV	/ER AND CLIM	RECORD OF RIVER AND CLIMATOLOGICAL OBSERVATIONS
TYPE OF RIVER GAGE	ELEVATION OF RIVER GAGE ZFRO	FI OOD STAGE	NORMAL POOL STAGE				
TEMPERATURE F.	Presio	PRECIPIT		WEATHER (Calendar Day)		RIVER STAGE	
	AMOUNTS	6	Draw a straight line () through hours preopplation was observed, and a waved tine (~~~) through hours precipitation probably occurred implication	Mark X for all types occurring each day	h noite avad	97	
24 HRS ENDING AT OBSERVATION	_	(SU) UC	NOON P.M		g pserve sign al	READING >	
_	O Work Sond Sond Ice and Punc Sond Ice Mons Sind Punc Sind	asi lise ground (i	(中央・大田田) - 1 日本 (日本) - 1 日本	Fog Siaze Thunder	CONDITI Minds Winds different different	Z TENDEN	REMARKS (Special observations etc.)
	59.0						
2	1.57						
3	100		=	= 1			
w u	Q e						
9	8 8		_				
1	3,7						
80	340						
6	0.0						
0.	\$						
	0	111111111					
2:	Ø	- d					
13	050						
7	0.52		_				
2							
13	x/!-						
18	Car						
6,	عر در در						
20	400	11111111				7	82 wrog 80 6-1 4 Muroso - 0 48 mm
	t)						
22	603		01 0 V - 0 V				
24 53	b l						
25	-6						
56	0						
27	d)		= :				
2 8	9 0						
30)p\$						
31	>						
8	ST'8 MIS	CHECK BAR	CHECK BAR (For wire weight) NORMAL CK. BAR	punu ezeig es fic	lisi Remiy Sbriiy	×	
CONDITION OF RIVER AT GAGE	щ	RFADING	DATE	-		7	
B. Frozen, but open at gage C. Upper surface of smooth ice.	E. Ice gorge below gage F. Shore Ice G. Floating ice.			SUPFRVISING OFFICE		STATION IN EX	S S S S S S S S S S S S S S S S S S S
Ice gorge above gage.			_				

STATION	STATION (Climatological) Belyidere			(River Station if different)	MONTH LITT	WS FORM B-91 (03-09)	U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
STATE II.		S S S S S S S S S S S S S S S S S S S	COUNTY				NATIONAL WEATHER SERVICE
TIME (loca	TIME (local) OF OBSERVATION RIVER		TEMPERATURE 07:00	TURE PRECIPITATION 07:00	STANDARD TIME IN USE	RECORD OF RIVER AND CLIMATOLOGICAL OBSERVATIONS	OLOGICAL OBSERVATIONS
TYPE OF	TYPE OF RIVER GAGE	GAGE ZERO	F RIVER	FEG	NORMAL POOL STAGE		
T	TEMPERATURE			PRECIPITATION	NC	VEATHER (Observation Day)	
25	ONICINO	HR AMOUN	rs at ob		Draw a straight tine () through hours precipitation was observed, and a wavy fine () through thours precipitation probably occurred uniberyad	w	
	AT AT	(Sritb 90)	ps _t	_	MOON P.M	ging ging focultion	
DATE OF TE	AT AT OBSN	Mons mons wons wons wons wons wons wons wons w	Snow	ground ground ground ground ground ground ground ground	10 11 1 2 3 4 5 6 7 8 9 10 11	Fog Fog	REMARKS (SPECIAL OBSERVATIONS ETC.)
1		0.03 0.0	0				
2		0.00 00.0	0				
е		0.00 00.0	0				
4			0				
in .			0 0				
ဖ			0 0				
7			0 0				
arç i							
თ			, c				
5		\neg	٥				
Ξ		\neg	0				
12		\neg	0	123456789	10 11 1 2 3 4 5 6 7 8 9 10 11		
13		\neg	0				
4		\neg	0				
un E		8	0				
91			Σ				
17		Σ	Σ				
92			0				
19		0.00 00.0	0				
50		0.00 00.0	0				
21			0				
22		1.65 0.0	0	123456789	10 11 1 2 3 4 5 6 7 8 9 10 11		
23		0.00 00.0	0				
24			0				
25		0.00 00.0	0				
26		0.00 00.0	0				
27		0.00 00.0	0				
28		0.00 0.0	٥				
29		0.00 0.0	0				
30		0.28 0.0	0				
31		0.00 00.0	0				
	SUM	A B.32	Д	CHECK BAR (for w	CHECK BAR (for wire weight) NORMAL CHECK BAR	pu	
CONDITION	CONDITION OF RIVER AT GAGE	u,		READING	DATE	Fog Paint	
A Obstruc	ted by rough ice	ш	low gage			v Dean Chambers (bwwtp) on 01 Ang	2016 07-13&W
B Frozen,	Frozen, but open at gage Upper surface smooth ice	je F Shore ice ce G Floating ice					
D Ice gorg	e above gage	I				LOT Chicago	11 - 0583-02
							и

STATION (Climatological) Belvidere		(River Station if different)		WS FORM B-91 (03-09)		U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
STATE IL	COUNTY	uTY ie	RIVER			NATIONAL WEATHER SERVICE
TIME (local) OF OBSERVATION RIVER		TEMPERATURE PRECIPITATION 07:00	STANDARD TIME IN USE	RECO	RD OF RIVER AND CLIP	RECORD OF RIVER AND CLIMATOLOGICAL OBSERVATIONS
TYPE OF RIVER GAGE	ELEVATION OF RIVER GAGE ZERO	FLO	NORMAL POOL STAGE			
TEMPERATURE		PRECIPITATION	NO	WEATHER (Observation Day)	П	
	24 HR AMOUNTS AT OB	-	Draw a straight line () through hours precipitation was observed and a wavy line .	Mark X for all types occurring each	vence m	
24 HRS ENDING AT	lenins) Selins)	(m)	NOON P. W. C.		f occur ent fron tion	
OBSERVATION AT	Rain, m Snow ic hundred Snow ic pellets (ins and	a	0	Log	Dama Winds Time of It different above Condit	REMARKS (SPECIAL OBSERVATIONS ETC.)
NIII	0.00 00.0					
2	\vdash	0				
3	0.00 00.0	0				
ч	0.0	0				
5	0.0	0				
6	0.0	0				
	0.0	0				
00	0.0	0				
6	0.0	0				
10	0.0	0				
lu .	0.0	0				
12	0.00 00.0	0 123456789	1 10 11 1 2 3 4 5 6 7 8 9 10 11			
13	0.0	0				
14	0.0	0		XX		Heavy rains and up to pea size hall at around 2.
15	2.40 0.0	0		×	×	
91	0.17 0.0	0				
17	0.0	0				
18	0.0	0				
61	0.0	0				
20	0.0	0				
21	0.00 00.0	0				
22	0.0 H	0 123456789	11011 1234567891011			
23	1.07 0.0	O		×		
24	0.0	0				
55	0.0	0				
56	0.0	0				
27	0.0	0				
28	0.0	0				
00	4.70 0.0	0				
8	0.11 0.0	0				
31				1	**************************************	
NOS	10.30	CHECK BAR (for	CHECK BAR (for wire weight) NORMAL CHECK BAR	əzr əzr	X spr. w	
CONDITION OF RIVER AT GAGE		KEADING	DAIE	els	Pin	
A. Obstructed by rough ice	ш	w gage		Closed by Dean Cha	Chambers (bwwtp) on 05 Ji	Jul 2017 09:08AM
C Upper surface smooth ice	G. Floating Ice			ING OFFICE		STATION INDEX NO
U. Ice gorge above gage	Ę			LOT Chicago		11-0583-02

STATION (Chroatological) Belvidere		(River Station if different)	MONTH Jul 2017	WS FORM 8-91 (03-09)	U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE
STATE	COUNTY		RIVER		
TIME (local) OF OBSERVATION RIVER		JRE PRECIPITATION 07:00	STANDARD TIME IN USE	RECORD OF RIVER AI	RECORD OF RIVER AND CLIMATOLOGICAL OBSERVATIONS
TYPE OF RIVER GAGE	ELEVATION OF RIVER GAGE ZERO	10	NORMAL POOL STAGE		
TEMPERATURE		PRECIPITATION	NC	Ц	RIVER STAGE
	24 HR AMOUNTS AT OB	- marginer	Draw a shaight time () through hours precipitation was observed and a wavy fine f I through lows prepatation probably occurred unabserved	tuc equitar	Gage
24 HRS ENDING AT	ce politically pol	_	NOON P.M	Parities (1900)	at ency
OBSERVATION AT MAX MIN OBSN	Rain ma snow. e (in and hundrun Snow ic pellets (ins and stellets (ins and stellets	12345	10 11 1 2 3 4 5 6 7 8 9 10 11	Ice per Claze Claze Thunn Hail Winds winds winds sbove	AM E REMARKS (SPECIAL OESERVATIONS, ETC.)
	0 0.0 00.0				
2	0.00 00.0				
3	0.12 0.0 0				
4	0.0				
C	0.0				
υ,	0.38 0.0				
α	0.0				
	0.0				
10	-			×	
11	0.00 00.0				
12	0.92 0.0 0	123456789	10 11 12 3 4 5 6 7 8 9 10 11	XXX	
£1.	0.85 0.0 0				
14	0.00 00.0				
15	0.00 0.0				
91	0.51 0.0 0				
21	0.00 00.0				
18	0.00 00.0				
1.0	0.0				
20	2.35 0.0 0			X X X	
21	0.06 0.0 0				
22	2.55 0.0 0	123456789	10 11 1 2 3 4 5 6 7 8 9 10 11		
23	0.00 00.0				
24	0.0				
25	0.0				
26	0.00 0.0				
27	0.0				
28	0.0				
59	0.0				
30	0.0				
3.1	0.00 00.0				
SUM	71.6	CHECK BAR (for a	CHECK BAR (for wire weight) NORMAL CHECK BAR	pun əze	× ×
CONDITION OF RIVER AT GAGE		KEADING	DAIE	15) BH BH	\rightarrow
A Obstructed by rough ice	ш			by Dean Chambers (bwwtp)	on 01 Aug 2017 11:05AM
C Upper surface smooth ice	G Floating ICe			SUPERVISING OFFICE	STATION INDEX NO
U ice gorge above gage	c			LOI CIIICAGO	11-0583-02

For questions or comments concerning this web page please contact info@cocorahs.org.

Unless otherwise noted, all content on the CoCoRaHS website is released under a Creative Commons Attribution 3.0 License.

Privacy Policy

Data Usage Policy Copyright © 1998-2017, Colorado Climate Center, All rights reserved.

For questions or comments concerning this web page please contact info@cocorahs.org.

Unless otherwise noted, all content on the CoCoRaHS website is released under a Creative Commons Attribution 3.0 License.

Privacy Policy

Data Usage Policy Copyright © 1998-2017, Colorado Climate Center, All rights reserved.

APPENDIX C MODELING INPUT AND SITE ANALYSIS

FEMA's National Flood Hazard Layer (Official)

Data from Flood Insurance Rate Maps (FIRMs) where available digitally. New NFHL FIRMette Print app available: http://tinyurl.com/j4xwp5e

1mi

USGS The National Map: Orthoimagery | National Geospatial-Intelligence Agency (NGA); Delta State University; Esri | Print here instead: http://tinyurl.com/j4xwp5e Support: FEMAMapSpecialist@riskmapcds.com | USGS The National Map: Orthoimagery

MAP LEGEND

Not rated or not available Streams and Canals Interstate Highways Major Roads Local Roads US Routes Rails 8 Water Features Transportation Ī Not rated or not available Area of Interest (AOI) Soil Rating Polygons Area of Interest (AOI) Soil Rating Lines 9 Soils

distance and area. A projection that preserves area, such as the Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

Source of Map: Natural Resources Conservation Service

Coordinate System: Web Mercator (EPSG:3857)

Web Soil Survey URL:

The soil surveys that comprise your AOI were mapped at

1:12,000.

MAP INFORMATION

Please rely on the bar scale on each map sheet for map

measurements.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Survey Area Data: Version 11, Sep 20, 2017 Soil Survey Area: Boone County, Illinois

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Aerial Photography

Background

Date(s) aerial images were photographed: Sep 26, 2010—Jul 24, 2016

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Not rated or not available

1

B/D

₽

⋖

9

Soil Rating Points

B

Q/B

NSDA

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
59A	Lisbon silt loam, 0 to 2 percent slopes	C/D	60.1	2.0%
62A	Herbert silt loam, 0 to 2 percent slopes	C/D	37.7	1.2%
102A	La Hogue loam, 0 to 2 percent slopes	B/D	179.0	5.9%
125A	Selma loam, 0 to 2 percent slopes	B/D	148.1	4.8%
152A	Drummer silty clay loam, 0 to 2 percent slopes	B/D	40.6	1.3%
188A	Beardstown loam, 0 to 2 percent slopes	B/D	4,2	0.1%
197A	Troxel silt loam, 0 to 2 percent slopes	В	2.7	0.1%
198A	Elburn silt loam, cool, 0 to 2 percent slopes	С	33.4	1.1%
221B	Parr silt loam, 2 to 5 percent slopes	С	459.6	15.0%
221C2	Parr silt loam, 5 to 10 percent slopes, eroded	С	77.7	2.5%
290B	Warsaw loam, 2 to 4 percent slopes	В	47.0	1.5%
290C2	Warsaw loam, 4 to 6 percent slopes, eroded	В	20.9	0.7%
327B	Fox silt loam, 2 to 4 percent slopes	В	10.0	0.3%
329A	Will loam, 0 to 2 percent slopes	B/D	7.1	0.2%
332B	Billett sandy loam, 2 to 5 percent slopes	A	27.1	0.9%
343A	Kane silt loam, 0 to 2 percent slopes	B/D	6.5	0.2%
354A	Hononegah loamy coarse sand, 0 to 2 percent slopes	A	3.7	0.1%
354B	Hononegah loamy coarse sand, 2 to 6 percent slopes	A	0.3	0.0%
369A	Waupecan silt loam, 0 to 2 percent slopes	В	186.5	6.1%
387A	Ockley silt loam, 0 to 2 percent slopes	В	60.5	2.0%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
440A	Jasper silt loam, 0 to 2 percent slopes	В	35.7	1.2%
440B	Jasper silt loam, 2 to 5 percent slopes	В	117.0	3.8%
490A	Odell silt loam, 0 to 2 percent slopes	C/D	76.8	2.5%
512B	Danabrook silt loam, 2 to 5 percent slopes	С	624.4	20.4%
512C2	Danabrook silt loam, 5 to 10 percent slopes, eroded	С	12.3	0.4%
527C2	Kidami loam, 4 to 6 percent slopes, eroded	С	52.3	1.7%
528A	Lahoguess loam, 0 to 2 percent slopes	B/D	5.3	0.2%
623A	Kishwaukee silt loam, 0 to 2 percent slopes	В	119.2	3.9%
623B	Kishwaukee silt loam, 2 to 5 percent slopes	В	38.0	1.2%
625B	Geryune silt loam, 2 to 5 percent slopes	С	43.7	1.4%
783A	Flagler sandy loam, 0 to 2 percent slopes	A	13.3	0.4%
802B	Orthents, loamy, undulating	С	312.7	10.2%
939C2	Rodman-Warsaw complex, 4 to 6 percent slopes, eroded	A	14.3	0.5%
939D2	Rodman-Warsaw complex, 6 to 12 percent slopes, eroded	A	0.5	0.0%
3082A	Millington silt loam, 0 to 2 percent slopes, frequently flooded	B/D	3.5	0.1%
3776A	Comfrey loam, 0 to 2 percent slopes, frequently flooded	B/D	32.5	1.1%
3800A	Psamments, 0 to 2 percent slopes, frequently flooded	A	82.8	2.7%
W	Water		63.1	2.1%
Totals for Area of Inter	est		3,060.3	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Component Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Catchment ID	Area	CN	Тс
SI(F)035	12.56	71	28
SI(D)057	14.74	82	18
SI(D)041	7.27	83	16
SI(D)010	4.40	83	17
SI(D)003	4.72	85	21
SI(C)091	13.25	87	23
SI(C)080	2.62	85	18
SI(C)071	2.40	90	14
SI(B)296	7.07	86	25
SI(B)255	10.74	84	27
SI(B)254	4.96	78	15
SI(B)251	2.33	75	13
SI(B)226	23.12	81	24
SI(B)202	4.13	82	15
SI(B)201	11.32	77	22
SI(B)174	5.52	87	17
SI(B)087	7.53	82	27
SI(B)085	7.70	83	18
SI(B)078	3.72	79	19
SI(B)076	2.99	85	17
SI(B)073	3.73	84	10
SI(B)064	13.92	77	36
SI(B)062	6.64	79	15
SI(B)040	4.16	84	19
SI(B)038	14.61	83	20
SI(A1)033	6.08	86	34
SI(A1)030	7.63	85	24
SI(A1)029	5.33	87	20
SI(A1)028	3.44	85	19
SI(A)246	5.62	86	15
SI(A)213	4.66	77	17
SI(A)186	28.74	87	39
SI(A)161	16.89	85	26
SI(A)149	3.11	84	25
SI(A)148	37.32	86	35
SI(A)147	23.44	85	25
SI(A)129	1.73	83	12
SI(A)120	1.00	83	13
SI(A)114	14.88	86	28
SI(A)105	2.24	87	14
SI(A)103	2.40	85	13
SI(A)097	2.47	89	16
SI(A)096	6.23	85	21
SI(A)089	15.74	84	25
SI(A)088	7.91	83	23

SI(A)077	1.57	85	21
SI(A)073	6.57	84	21
SI(A)063	5.12	84	22
SI(A)061	7.51	82	24
SI(A)051	6.20	88	20
SI(A)047	6.90	87	20
MH(F)045	20.29	82	31
MH(F)039	6.50	81	36
MH(F)037	2.54	78	25
MH(F)036	4.27	73	35
MH(F)029	3.48	71	31
MH(F)027	10.56	78	63
MH(F)014	12.55	79	26
MH(F)010	24.35	82	30
MH(E)031	11.51	92	21
MH(DI)047	2.87	85	15
MH(D1)046	21.92	83	20
MH(D1)026	7.54	84	16
MH(D)020	4.27	88	24
MH(D)013	7.47	87	50
MH(D)012	10.30	82	18
MH(D)004	9.48	85	18
MH(D)003	4.86	82	21
MH(D)002	7.36	86	19
MH(C)101	3.85	94	38
MH(C)086	33.13	85	27
MH(C)077	8.20	83	17
MH(C)073	4.14	86	19
MH(C)071	2.44	88	20
MH(C)061	8.18	88	18
MH(C)054	1.66	94	17
MH(C)053	2.88	93	20
MH(C)045	5.53	89	16
MH(C)041	2.76	87	16
MH(C)040	1.99	92	16
MH(C)035	3.47	91	15
MH(C)032	2.45	89	13
MH(C)030	4.20	81	15
MH(C)029	3.51	70	15
MH(C)027	0.72	88	19
MH(C)026	3.09	68	13
MH(C)025	6.73	74	23
MH(C)021	1.52	94	24
MH(C)016	2.29	83	19
MH(C)014	4.50	83	15
MH(C)005	3.80	92	22
MH(B)57	2.18	74	12
[MILIO)27	2.18	/4	12

MH(B)146	2.34	85	15
MH(B)140	1.41	89	16
MH(B)130	14.28	86	23
MH(B)112	6.33	84	19
MH(B)109	11.59	80	19
MH(B)099	10.29	84	19
MH(B)092	11.82	91	18
MH(B)091	19.32	85	27
MH(B)087	2.59	83	14
MH(B)083	9.18	88	21
MH(B)071	15.62	85	24
MH(B)051	19.61	86	25
MH(B)050	12.93	86	22
MH(B)048	6.23	84	19
MH(B)045	3.13	88	27
MH(B)042	14.71	83	22
MH(B)041	9.99	85	22
MH(B)030	0.98	85	13
MH(B)017	9.02	91	22
MH(B)014	10.55	87	25
MH(B)011	2.00	80	21
MH(B)008	22.33	82	19
MH(A1)016	1.32	85	19
MH(A1)014	10.08	86	26
MH(A1)010.5	9.38	85	24
MH(A1)009	0.58	85	25
MH(A1)006	1.00	86	21
MH(A)067	10.60	85	33
MH(A)064	6.61	87	31
MH(A)058	6.71	88	29
MH(A)054	13.97	82	20
MH(A)050	2.99	83	17
MH(A)049	4.94	83	21
MH(A)048	4.81	86	28
MH(A)044	6.51	86	28
MH(A)040	4.78	81	24
MH(A)033	35.81	83	26
MH(A)025	1.78	82	12
MH(A)024	9.16	85	16
MH(A)018	3.24	85	19
MH(A)009	9.94	84	24
MH(A)008	9.91	82	30
MH(A)007	13.02	80	24
MH(A)005	24.65	86	18
MH(A)003	17.71	83	17
MH(A)001	13.86	81	21
DS(E)001	17.80	82	34
D3(L)001	17.00	<u> </u>	34

Curve Numbers

DS(A1)004	11.86	87	44
DS(A1)002	18.64	87	44

Belvedere Southside Drainige Study 170791.3 11/7/2017 EFG

Project: Project #: Date: Calcs by:

Call T Day	4	0.07	+	+	0.02	+	+	+	0.10	+		+	0,01	+	-				000	+	H	0.02	Н				+	+	0.03	H	Н	0.03	+	+	40 n		H	0.01	+	+	ł	+	0.04	Н	Н	0.04	+	+	0.04	$^{+}$	$^{+}$	H	0.05	Н	+	0.01	+	
F		2.8	1	+	9,8	1		+	2 4 2	+		1	0.6	4					2	1	L	5.2			-			+	46	ļ.,	H	9	1	0	+		Н	7.5	1	+	+	+	5.0	Ц	Н	6.8	1	+	67	+	+	F	5.6	Н	-	100	1	
41010	3 (11/11)	0000	0.003	+	0.012	+	+	+	0000	+		+	0.016	+					0.006	+	0.014	-	Н				+	+	0.006	-	Н	0.017	+	0.002	0.023		Н	0.027	4	4	+	╁	0.012		0.044	0.013	0.015	4	0,013	+	+	0.019	0.015	Н	4	0.012	4	
- Conser	+	0.25	0.25	0.000	0.3125	0.25	0.3123	03130	0.0163	0.43		20	0.5	0.43/5					0.4375		0.3125	0.3125	0.3125				0.4375	0.5	0.375			0.25	0.3125	A 27E	0,5/5		0.3125	0.25	0.25	0.375	0.05	0.25	0.25	0.3125		0.375	0.375	2000	0.375	0.375		0.375	0.25		0.25	0.375	0.5145	
Diam (01	(m) mena		-		172	1	571	1 75	-			,	7 11	1./3					1.75		1.25	1.25	1.25				1.75	2	1.5			-	67.1	2	1.3		1.25	_	;	I.5	-		_	1.25		1.5	1.5		172	15		15	7			175	1.65	
1001	r (mg	502	1729	1	356	1040	484	1556	356	950		400	293	304					87		325	439	178				739	311	995			629	481	1303	1303		366	155	424	0/0	328	930	049	1222		872	881	040	1303	20CT		815	914		234	347	245	
Treate	adk:	bibe	pipe		pipe	pipe	bibe	ouiu	adia d	adid		1,1300	bibe	adid					pipe		bibe	pipe	pipe				aulu	nine	pipe			bibe	bibe	wine	adid		pipe	pipe	bibe	bibe	nine	adja	pipe	pípe		adid	pipe	4000	bibe	pipe		pipe	adid		bibe	adid	adid	
T. Oach	Capti	0.18	0,03	0.22	0.03	0,01	600	000	200	0.12	40.0	670	0.03	0,03	20.0	0.16	0.03	75.0	0.03	90'0	90'0	50'0	0.03	0.18	90'0	+000	90.0	0.06	0.13	0.02	0.02	0.11	000	0.03	0.07	0.12	0.07	000	0.07	011	0.05	90'0	0.08	0.01	0.02	90.0	0.04	60.0	0.13	90.0	0.07	0.04	90'0	0.04	200	0.00	0.01	
10000	(n/a)	7.7	7	51	81	3.2	57		0.	2.4	3.0	7	2	3.5	24	0.7	0 0	2.0	1.2	22	1.9	1.6	1.1	1.9	1.8	22	1.3	1	13	1.5	1.2	2.7	0 +	3.1	1.9	2.2	61	2.7	472	15	22	2.6	1.8	2.7	3.4	179	07	3,0	Q'T	2.9	2.8	2.2	2.5	2.5	5.5	2,4	2.7	
10/0/07	(m/m)	0.004	0.003	0.008	0.012	6200	0.020	27000	0000	0.014	0.000	2100	9100	6700	0.042	0000	0.010	2100	0.006	0.018	0.014	0.010	0.005	0.014	0.013	6000	0.006	0.005	9000	6000	9000	2100	0000	0.023	0.014	0.012	0.013	0.027	\$100	0000	0.018	0.016	0,012	0.018	0.044	0.013	0,015	0.039	CION	0.021	0.019	6100	0.015	0.024	5700	0.022	Vibra	
		\$ 100	103	1135	202	167	357	161	248	1042	10,51	1000	208	9/4	200	241	3000	0707	154	444	415	273	117	1227	377	370	271	249	570	119	2.0	1053	180	424	475	921	439	38	909	576	404	553	464	36	215	+	+	+	+	t	t	Н	Н	353	+	t	1	
Busined	Faves	res	YES	ON CA	ON ON	2	ON ON	Anc	200	VPC	ABC	200	TES	200	ON	TES	3 5	No.	ON	ON	NO	NO	ON	ON	ON ON	NEC NEC	ON	NO	ON	NO	NO	YES	CN CN	VES	NO	YES	ON	ON	YES	NO	NO	YES	ON	YES	ON S	ON	ON S	NO W	NA.	YES	YES	NO	YES	ON ON	NO	NO	NO	-
T. Geeb	i (Im)	0.48	0.51	0.35	0.30	0.22	0.70	0.20	033	0.28	010	0.27	0.27	010	BI'O	0.33	0.50	030	0.40	0.25	0.28	0.32	0.42	0.29	670	0.05	0.39	0.44	0.39	0.33	0.40	0.26	0.28	0.23	0.28	0.30	620	0.22	0.28	0.34	0.25	0.26	0.30	0.26	0.18	620	87.0	0.70	0.25	0.24	0.25	0.25	0.27	0.23	0.50	0.23	0.63	200
- (0/0)	(M/M)	100%	1,003	8007	210.0	570.5	0700	200	0000	1014	2101	2101	OYD'	045	20.07	0107	0107	1011	9000	8107	0.014	010	5003	1,014	010	010	900	1,005	900'0	600	900'	1000	014	1023	014	0.12	0.013	750	910	000	0.018	910	0.012	0.018	044	013	210.	0.013	012	021	610	019	015	0.024	013	022	When	-
P. fini	=	+	3.04	+	+	1	+	+	+	+	t	t	t	+	+	+	+	+	+	H	3.04 (3.04	+	+	1	t	t			+	3.04		+	+			+	+	1	+	H		+	+	+	+	+	+	+		Н	+	3.04 0	+	t		
000	i	+	+	+	+	+	+	ł	ł	H	+	+	+	+	+	ł	+	ł	H		Н		100	+	+	+	H	H	H	H	+	+	ł	H	H	H	100	+	+	t	+	H	Н	+	+	+	ł	+	+	H	H	Н	+	100	+	H	+	
F	+	47.0	0.24	970	670	17.0	47.0	0.74	0.24	0.24	0.24	0.34	470	0.24	620	0.24	470	0.74	0.24	0.24	0.24	0.24	0.24	977	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	9770	62.0	15.0	0.24	0.24	L	L	Ц	4	0.24	+	1	1	
L' (unim)		t	1	†	+	1	+	t	t	t	t	t	t	t	+	t	t	+	t	H	Н	П	7	+	+	t	t	H	Н	+	+	+	t	+	۲	Н	+	+	+	t	H	Н	Н	+	+	+	+	t	۲	۲	H	+	+	16	٠	╁	+	
T, (he) T	0.40	0.73	0.73	0.57	0.35	97.0	0.50	150	0.40	0.40	0.53	8.31	100	0.50	070	000	050	0.40	0.44	0.31	0.35	0.39	0.46	0.47	0.33	0.34	0.49	0.52	0.55	0.36	110	0.40	0.31	0.31	0.35	0.42	0.37	0.22	0.37	0.44	0.32	0.37	0.41	0.31	0.19	140	0.23	0.46	0.31	0.32	0.31	0.32	0.38	0.26	0.37	0.26		
Slope	1000	0.004	0.003	0.008	0.012	0000	0700	0.007	0.009	9014	0.012	0.016	0.024	0.045	0000	0000	0012	0011	9000	0.018	410'0	0.010	0.005	0.014	0.019	0.018	0.006	0,005	9000	6000	0.006	0000	0.014	0.023	9100	0.012	0.013	0.027	8100	6000	8100	910.0	0.012	0.018	0.044	0.015	0.013	0.013	0.012	0.021	610.0	610.0	0.015	0.024	0.012	T	İ	
Floration	TOO	180	77.8	104	447	903	200	806	799	802	815	010	908	810	010	010	814	810	810	817	834	808	786	702	367	797	262	787	793	786	785	777	784	798	808	790	780	800	798	266	793	290	775	775	707	270	802	786	782	773	263	801	788	793	788	786		2000
	+	+	+	1	+	+	1	1		+	l		+	-		+	+	+				-		+	+	+	-				+	-					+	1	+					-	+	+		+	-			+	+	+	-	-		
Flexation	TOU TOU	180	187	4//	208	000	200	818	908	818	840	823	827	768	000	837	R40	818	812	827	846	816	788	908	803	814	802	290	801	788	786	786	788	840	816	802	792	918	828	802	808	816	790	200	190	788	819	810	798	802	179	824	812	805	798	298	202	
TOTAL CONDU	CO31	1003	1995	1235	1000	1307	303	1817	770	1142	2031	701	778	358	1245	BCY	2126	756	341	544	840	812	395	1327	425	636	1110	099	1236	219	170	1012	289	1827	575	1021	905	1130	1683	676	832	1583	1234	1410	1516	1232	495	1873	1382	1391	962	1226	1589	472	829	536		400
Subbastin	2000	S(A1)002	5(41)004	DE JOUT	H(A)001	TICA 1005	H(A)003	HCAJOOR	H(A)009	H(A)016	H(A)017	H(A)018	H(A)074	HIANOSS	MANAS	H(A1029	H(A1030	H(A)032	H(A)033	H(A)036	H(A)039	H(A)040	MH(A)044	HIA1040	HCADOSO	H(A)054	H(A)058	H(A)064	H(A)067	(A1)006	(A1)009	(A1)014	(A1)016	H(B)008	110(8)	f(B)014	(B)017	(B)041	1(8)042	(B)045	(8)048	(B)050	(8)051	1(8)051	1(B)071	TRIORS.	(B)087	I(B)091	260(8)	(B)099	MH(B)109	(8)112	MH(B)130	MH(B)140	(C)005	MH(C)014	MUCOOLE	- 4111

0.00	0.04	0,01	0.01	0.03	0.01 0.02 0.00 0.00 0.00	0.01	0.02	0.02 0.02 0.03 0.09 0.09
9.3 8.8 6.1	9.6 9.6 6.1 8.7	7.5	3.0	5.0	8.7 8.7 8.7 8.7	5.5	3.6	7.8 8.6 8.6 7.4 5.3 9.7
0.022 0.022 0.018	0.023 0.021 0.013 0.027	0.027	0.004	0.012	0.027	0,015	0.020	0.017 0.021 0.014 0.013 0.034
0.375 0.375 0.375 0.25	0,3125 0,4375 0,3125 0,3125	0.25 0.3125 0.25	0.25	0.3125	0.25 0.375 0.25 0.3125	0.3125	0.3125	0.375 0.375 0.3125 0.3125 0.3125
21 LS 12 LS	1.25 1.75 1.25 1.25	1 1.25	1	1.255	115 115 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.25	1.25	1.5 1.25 1.25 1.25 1.25
144 422 78 309	341 341 373 361	357 1246 371	153	352	101 6617 6617 645 191 191	347	615	665 719 562 634 634 44
adid adid adid	pipe pipe pipe	pipe pipe	ad add	odid adid	pipe pipe pipe pipe	pipe	pipe oipe	
				+++++				
0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03	0.09 0.19 0.09 0.09 0.09	0.00	0.03 0.41 0.12 0.12 0.06 0.16	0.00	0.10 0.11 0.07 0.02 0.02 0.00 0.01 0.01 0.01 0.02 0.03	0.31 0.14 0.14 0.05 0.06 0.06 0.07	0.07 0.07 0.07 0.05 0.05	0.04 0.04 0.04 0.04 0.04 0.03 0.03
3.1 2.8 2.8 2.2 2.3 2.3 2.3 2.3 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4			110 110 115 115 115 115 115 115 115 115			2.0	223 229 3 229 3 115	2.2 11 2.9 2.3 1.2 1.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2
	++++++	++++++	0.004 0.007 0.007 0.009			0.016 0.014 0.015 0.016 0.026 0.039 0.019 0.016		0.018 0.021 0.012 0.014 0.030 0.034 0.034
253 70 351 376 277 277 277 206 465 198 198	222 222 1615 755 755 1004 275 647 647	405 406 359 368 368 458 458	214 1002 1002 1002 459 459 459 459 438 438	699 621 621 524 639 639 639	930 930 558 198 216 38 1342 1342 161 161 253 253 253 271	2284 889 1267 2828 666 666 657 657 714	555 536 536 536 576 1445	251 1020 1020 161 296 406 406 288 288 288 153 307
NO N	NO N	N N N N N N N N N N N N N N N N N N N	999999999	YES YES ON THE NO.	NO N	N N N N N N N N N N N N N N N N N N N	000000	NO NO NO VES VES VES NO
0.19 0.30 0.21 0.23 0.24 0.24 0.28 0.25 0.25	0.23 0.24 0.24 0.23 0.29 0.22	0.24 0.24 0.28 0.28 0.31	0.29 0.45 0.36 0.36 0.36	0.27 0.29 0.29 0.29 0.32	0.28 0.26 0.27 0.20 0.20 0.19 0.19 0.26	0.27 0.28 0.27 0.19 0.25 0.27	0.24 0.25 0.20 0.33 0.15	0.25 0.25 0.29 0.29 0.28 0.20 0.20 0.20
0.037 0.027 0.029 0.024 0.024 0.024 0.021 0.024 0.021 0.014 0.019	0.023 0.023 0.024 0.027 0.027 0.027	0.003 0.022 0.022 0.039 0.014	0.007 0.007 0.009 0.009	0.016 0.016 0.014 0.019 0.010	0.014 0.017 0.027 0.027 0.032 0.040 0.040 0.012	0.016 0.014 0.015 0.026 0.039 0.019 0.016	0.005 0.005 0.019 0.033 0.009 0.009	0.017 0.021 0.021 0.019 0.030 0.034 0.034
3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04	3.04 3.04 3.04 3.04 3.04	3.04	3.04 3.04 3.04 3.04 3.04 3.04	3.04	3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04	3.04 3.04 3.04 3.04 3.04 3.04 3.04	3.04 3.04 3.04 3.04 3.04	3.04 3.04 3.04 3.04 3.04 3.04 3.04 3.04
100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100	100 100 100 100 100 100	100 100 100 100 57	99 100 100 100 100 100 100 100
0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24	0.24 0.24 0.24 0.24 0.24 0.24 0.24	024	0.24 0.24 0.24 0.24 0.24 0.24	0.24 0.24 0.24 0.24 0.24	0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24	0.24 0.24 0.24 0.24 0.24 0.24 0.24	0.24 0.24 0.24 0.24 0.24	0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
13 15 15 15 15 16 16 16 16 17 17 17	++++++							17 19 18 27 27 17 15 28 13 13
0.25 0.25 0.25 0.25 0.27 0.27 0.27 0.28 0.28	0.29 0.44 0.32 0.32 0.30 0.30	0.33 0.33 0.35 0.35	0.32 0.32 0.52 0.59 0.60 0.60	0.34 0.37 0.38 0.35	0.35 0.25 0.26 0.23 0.23 0.22 0.23 0.23	0.58 0.41 0.64 0.64 0.05 0.32 0.34	0.56 0.33 0.32 0.60 0.60	0.28 0.31 0.45 0.45 0.29 0.36 0.41 0.41
0.037 0.012 0.027 0.029 0.024 0.024 0.024 0.024 0.024 0.019 0.019	0.023 0.021 0.005 0.024 0.013 0.027	0.027 0.027 0.022 0.039 0.014 0.011	0.002 0.002 0.004 0.007 0.007 0.009	0.015 0.012 0.013 0.014 0.013	0.014 0.017 0.022 0.022 0.027 0.032 0.040 0.012	0.016 0.014 0.015 0.016 0.039 0.019 0.016	0.005 0.005 0.019 0.033 0.009 0.021	0.017 0.018 0.021 0.012 0.014 0.030 0.013 0.034 0.034
769 782 762 766 760 770 770 770 780 782 783 787 787	802 797 797 792 804 792 794	770 812 798 790 769 782	777 776 777 777 777 780 784	805 805 805 804 804 804	806 828 828 828 832 839 808 808 808 814	820 822 810 810 800 805 784 782	780 812 808 820 822 836	830 830 828 772 774 805 805 817 817
782 784 774 790 777 777 780 798 798 798 798 798 889 799 890	834 834 840 762 830 802 824 824	775 834 836 806 782 796	781 778 778 780 780 782 795	820 820 818 824 812 812	820 829 842 832 840 841 860 817 818 818	858 836 836 862 820 820 796 794	784 838 820 842 836 836	844 842 842 842 788 788 798 820 798 827
353 170 476 476 397 417 417 417 728 565 376 316	397 1388 2056 855 1104 748 1108	505 816 1752 408 929 1780	314 1102 660 712 712 405 538 1362	799 1241 976 739 611 300	1027 1047 1149 343 370 370 329 1142 281 353 353 353	2384 989 1714 2928 766 804 638 758	739 1270 636 676 1545	764 651 1260 1120 823 1030 506 2256 297 407
MH(C)026 MH(C)029 MH(C)032 MH(C)032 MH(C)043 MH(C)041 MH(C)041 MH(C)043 MH(C)043 MH(C)043 MH(C)043 MH(C)043 MH(C)043 MH(C)043 MH(C)043	MHC)073 MHC)101 MHC)101 MHC)101 MHC)103 MHC)104 MHC)104 MHC)104	MH(D)026 MH(D)026 MH(D)046 MH(D)047 MH(D)047 MH(E)031 MH(E)010	MH(F)027 MH(F)027 MH(F)029 MH(F)036 MH(F)037 MH(F)039 MH(F)045	SI(A)047 SI(A)061 SI(A)063 SI(A)063 SI(A)073 SI(A)073	SI(A)108 SI(A)109 SI(A)103 SI(A)1103 SI(A)1103 SI(A)1103 SI(A)1120 SI(A)1120 SI(A)1120 SI(A)1120	SI(A)148 SI(A)149 SI(A)161 SI(A)186 SI(A)213 SI(A)246 SI(A)1028 SI(A)1029 SI(A)1030	SI(A1)038 SI(B)038 SI(B)040 SI(B)062 SI(B)064 SI(B)064	SI (B) 076 SI (B) 078 SI (B) 065 SI (B) 174 SI (B) 201 SI (B) 202 SI (B) 254 SI (B) 254

Г									Ī.,
				0.03	0.01				0.02
				6.9	5.1				4.9
				0.013	0.013				600'0
				0.375	0.25			100000	0.3125
				1.5	1				1.25
				262	183				361
					bibe				bibe
0.17	80'0	0.02	0.05	90'0	90'0	0.05	90'0	0.10	0.10
1.9	1.5	5.6	2.2	1.9	23	2.5	2.6	2.8	67
0.014	6000	970.0	610'0	0.013	0.013	0.024	0.025	0.031	6000
1160	453	202	373	394	346	481	154	1056	969
NO	NO	ON	ON	ON	YES	ON	NO	NO	YES
0.28	0.34	0.22	0.25	0.29	0.29	0.23	0.22	0.20	0.34
0.014	6000	0.026	0,019	0.013	0.013	0.024	0.025	0.031	60000
3.04	3.04	3.04	3.04	3,04	3.04	3.04	3.04	3.04	3,04
100	100	100	100	100	100	100	100	100	100
0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
27	25	14	18	23	21	17	91	18	28
0.45	0.42	0.24	0.30	0.38	0.34	0.28	0.27	0.31	0.46
0.014	0.009	0.026	6100	0.013	0.013	0.024	0.025	0.031	6000
816	815	226	787	189	922	786	784	784	774
834	820	784	962	908	784	800	798	820	784
1260	553	307	473	1290	629	185	551	1156	1156
\$1(8)255	SI(B)296	SI(C)071	SI(C)080	\$I(C)091	St(D)003	St(D)010	SI(D)041	SI(D)057	SI(F)035

APPENDIX D AS-BUILTS AND PLANS

APPENDIX E COST ESTIMATES

Client City of Belvidere Project 170791.3

100 YEAR DESIGN STORM - FULL PLAN

No.	Pay Item	Quantity	Unit	Unit Price		Amount
1	BASIN A STORM SEWER					
	72" RCP	1,460	LF	\$ 1,950	\$	2,847,000
1	60" RCP	685	LF	\$ 1,700	\$	1,164,500
	48" RCP	1,395	LF	\$ 1,100	\$	1,534,500
	42" RCP	1,010	LF	\$ 900	\$	909,000
	36" RCP	1,215	LF	\$ 750	\$	911,250
	30" RCP	200	LF	\$ 550	\$	110,000
	ABANDONMENT OF EXISTING SEWERS	214	CY	\$ 180	\$	38,520
2	BASIN B STORM SEWER					
	84" RCP	1,200	LF	\$ 2,400	\$	2,880,000
	72" RCP	385	LF	\$ 1,950	\$	750,750
	60" RCP	395	LF	\$ 1,700	\$	671,500
	54" RCP	450	LF	\$ 1,450	\$	652,500
	42" RCP	3,145	LF	\$ 900	\$	2,830,500
	36" RCP	1,035	LF	\$ 750	\$	776,250
	ABANDONMENT OF EXISTING SEWERS	1,480	CY	\$ 180	\$	266,400
3	DETENTION POND, CHURCH PROPERTY, 1.75 AC-	1	LS	\$ 260,000	\$	260,000
	FT					
4	EXPAND DETENTION POND, HIGH SCHOOL	1	LS	\$ 1,308,000	\$	1,308,000
	PROPERTY, 24.3 AC-FT TOTAL					
5	SURFACE STORAGE, WASHINGTON ELEMENTARY,	1	LS	\$ 3,553,000	\$	3,553,000
	47.2 AC-FT					
6	SURFACE STORAGE, GLENWOOD DR AND	1	LS	\$ 1,514,000	\$	1,514,000
	FREEMONT ST, 9.8 AC-FT, 4 LOT BUY-OUTS					
7	SURFACE STORAGE, E 8TH ST AND S MAIN ST,	1	LS	\$ 2,376,000	\$	2,376,000
	12.1 AC-FT, 12 LOT BUYOUTS					
8	SURFACE STORAGE, E 4TH ST AND EAST AVE, 17.8	1	LS	\$ 3,417,000	\$	3,417,000
	AC-FT, 17 LOT BUY-OUTS					
9	SURFACE STORAGE, E 4TH ST AND FREEMONT ST,	1	LS	\$ 1,873,000	\$	1,873,000
	6.5 AC-FT, 11 LOT BUY-OUTS					
10	IMPROVED OVERLAND FLOW ROUTE, W 10TH ST	1	LS	\$ 400,000	\$	400,000
	AND BIRCH AVE, 2 LOT BUY-OUTS					

SUBTOTAL, CONSTRUCTION \$	31,050,000
---------------------------	------------

		OBINION OF PROPARIE CONCERNICATION COCK		==40000
10	density dentity dentity density	13 //	Ψ	4,000,000
10	CONSTRUCTION CONTINGENCY	15 %	· ·	4,660,000

		OPINION OF PROBABLE	CONSTRUCTION COST	\$ 35,710,000
11	ENGINEERING, DESIGN	6.0	%	\$ 2,150,000
12	ENGINEERING, CONSTRUCTION	7.5	%	\$ 2,680,000
13	LEGAL AND ADMINISTRATIVE	2.0	%	\$ 720,000
14	FINANCIAL CONSULTANT	2.5	%	\$ 900,000

OPINION OF PROBABLE TOTAL PROJECT COST \$ 42,160,000

Notes

- 1. Prices include sanitary sewer and water service relocation/adjustment, trench backfill, pavement or lawn restoration, traffic control, erosion control, construction layout, and mobilization
- 2. Prices do not include right-of-way acquisition, temporary or permanent easements, or relocating other utilities.
- 3. Prices are current for 2018.

ENGINEER'S OPINION OF PROBABLE COST

Client City of Belvidere

Project 170791.3

100 YEAR DESIGN STORM - PHASE III

No.	Pay Item	Quantity	Unit	Unit Price	Amount
1	BASIN A STORM SEWER				
	72" RCP	1,460	LF	\$ 1,950	\$ 2,847,000
	60" RCP	685	LF	\$ 1,700	\$ 1,164,500
	36" RCP	640	LF	\$ 750	\$ 480,000
2	\$11,	1	LS	\$ 3,553,000	\$ 3,553,000
3	IMPROVED OVERLAND FLOW ROUTE, W 10TH ST	1	LS	\$ 400,000	\$ 400,000
	*	,			

		SUBTOTAL, CONSTRUCTION	\$ 8,450,000
10	CONSTRUCTION CONTINGENCY	15 %	\$ 1,270,000
		OPINION OF PROBABLE CONSTRUCTION COST	\$ 9,720,000
11	ENGINEERING, DESIGN	6.0 %	\$ 590,000
12	ENGINEERING, CONSTRUCTION	7.5 %	\$ 730,000
13	LEGAL AND ADMINISTRATIVE	2.0 %	\$ 200,000
14	FINANCIAL CONSULTANT	2.5 %	\$ 250,000

OPINION OF PROBABLE TOTAL PROJECT COST \$ 11,490,000

<u>Notes</u>

- 1. Prices include sanitary sewer and water service relocation/adjustment, trench backfill, pavement or lawn restoration, traffic control, erosion control, construction layout, and mobilization
- 2. Prices do not include right-of-way acquisition, temporary or permanent easements, or relocating other utilities.
- 3. Prices are current for 2018.

Client City of Belvidere

Project 170791.3

100 YEAR DESIGN STORM - PHASE IV

No.	Pay Item	Quantity	Unit	Unit Price	Amount
2	BASIN B STORM SEWER				
	84" RCP	1,200	LF	\$ 2,400	\$ 2,880,000
1	72" RCP	385	LF	\$ 1,950	\$ 750,750
	60" RCP	395	LF	\$ 1,700	\$ 671,500
Į.	54" RCP	450	LF	\$ 1,450	\$ 652,500
	42" RCP	3,145	LF	\$ 900	\$ 2,830,500
	36" RCP	1,035	LF	\$ 750	\$ 776,250
	ABANDONMENT OF EXISTING SEWERS	1,480	CY	\$ 180	\$ 266,400
8	SURFACE STORAGE, E 4TH ST AND EAST AVE, 17.8	1	LS	\$ 3,417,000	\$ 3,417,000
	AC-FT, 17 LOT BUY-OUTS				
9	SURFACE STORAGE, E 4TH ST AND FREEMONT ST,	1	LS	\$ 1,873,000	\$ 1,873,000
	6.5 AC-FT, 11 LOT BUY-OUTS				

		SUBT	TOTAL, CONSTRUCTION	\$ 14,120,000
10	CONSTRUCTION CONTINGENCY	15	%	\$ 2,120,000
		OPINION OF PROBABLE	CONSTRUCTION COST	\$ 16,240,000
11	ENGINEERING, DESIGN	6.0	%	\$ 980,000
12	ENGINEERING, CONSTRUCTION	7.5	%	\$ 1,220,000
13	LEGAL AND ADMINISTRATIVE	2.0	%	\$ 330,000
14	FINANCIAL CONSULTANT	2.5	%	\$ 410,000

OPINION OF PROBABLE TOTAL PROJECT COST \$ 19,180,000

Notes

- 1. Prices include sanitary sewer and water service relocation/adjustment, trench backfill, pavement or lawn restoration, traffic control, erosion control, construction layout, and mobilization
- 2. Prices do not include right-of-way acquisition, temporary or permanent easements, or relocating other utilities.
- 3. Prices are current for 2018.

ENGINEER'S OPINION OF PROBABLE COST

Client City of Belvidere

Project 170791.3

100 YEAR DESIGN STORM - PHASE V

No.	Pay Item	Quantity	Unit	Unit Price	Amount
1	BASIN A STORM SEWER				
	48" RCP	1,395	LF	\$ 1,100	\$ 1,534,500
	42" RCP	1,010	LF	\$ 900	\$ 909,000
	36" RCP	575	LF	\$ 750	\$ 431,250
	30" RCP	200	LF	\$ 550	\$ 110,000
	ABANDONMENT OF EXISTING SEWERS	214	CY	\$ 180	\$ 38,520
6	SURFACE STORAGE, GLENWOOD DR AND	1	LS	\$ 1,514,000	\$ 1,514,000
	FREEMONT ST, 9.8 AC-FT, 4 LOT BUY-OUTS				
7	SURFACE STORAGE, E 8TH ST AND S MAIN ST, 12.1	1	LS	\$ 2,376,000	\$ 2,376,000
	AC-FT, 12 LOT BUYOUTS				
	SUBTOTAL, CONSTRUCTION				\$ 6.920.000

		SUBT	TOTAL, CONSTRUCTION	\$ 6,920,000
10	CONSTRUCTION CONTINGENCY	15	%	\$ 1,040,000
		OPINION OF PROBABLE	CONSTRUCTION COST	\$ 7,960,000
11	ENGINEERING, DESIGN	6.0	%	\$ 480,000
12	ENGINEERING, CONSTRUCTION	7.5	%	\$ 600,000
13	LEGAL AND ADMINISTRATIVE	2.0	%	\$ 160,000
14	FINANCIAL CONSULTANT	2.5	%	\$ 200,000

OPINION OF PROBABLE TOTAL PROJECT COST \$ 9,400,000

Notes

- 1. Prices include sanitary sewer and water service relocation/adjustment, trench backfill, pavement or lawn restoration, traffic control, erosion control, construction layout, and mobilization
- 2. Prices do not include right-of-way acquisition, temporary or permanent easements, or relocating other utilities.
- 3. Prices are current for 2018.

APPENDIX F CONCEPTUAL IMPROVEMENT PLAN EXHIBITS

